FEA Modelling of Externally-Strengthened Concrete Beam with CFRP Plates Under Flexural Test

نویسندگان

چکیده

This study concentrates on FEA modelling of concrete beam strengthened with externally bondedCFRP lates under bending by using Traction Separation Law (TSL) as constitutive law to require maximum cohesive stress and fracture energy values. The models were developed following experimental work reported Al-Rousan et al. [23] Ding [22]. Combination two numerical techniques adopted, i.e., Extended Finite Element Method (XFEM) Cohesive Zone (CZM) assigned within cracked region adhesive layer respectively. consistence deformations capture debonding failure seen during observations load-displacement was evaluated accordingly. Additionally, combination XFEM-CZM provides good strength predictions dataset. It is clearly shown that the mode exhibited are determined testing method, CFRP width length. sheets a significant contribution ductility, which noticeable in longest sheet. All series examined, discrepancies less than 25% found. Note current approach used calibrated values from similar grade plates, however better prediction can be produced if independently set-up.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solutions for the Flexural Behavior of Metal Beams Strengthened with Prestressed Unbonded CFRP Plates

Trapezoidal prestressed unbonded retrofit (TPUR) systems have been recently developed and tested. The authors have already developed a comprehensive and accurate analytical solution for the TPUR system that takes many system parameters into account. The main aim of this paper is to develop a simplified analytical solution for predicting the behavior of metal beams that have been strengthened wi...

متن کامل

Flexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets

The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...

متن کامل

Fatigue and Overloading Behavior of Steel-Concrete Composite Flexural Members Strengthened with High Modulus CFRP Materials

Due to corrosion and the continuous demand to increase traffic loads, there is a need for an effective system which can be used to repair and/or strengthen steel bridges and structures. This paper describes an experimental program, recently completed, to investigate the fundamental behavior of steel-concrete composite scaled bridge beams strengthened with new high modulus carbon fiber reinforce...

متن کامل

The Influence of CFRP Anchorage on Achieving Sectional Flexural Capacity of Strengthened Concrete Beams

This research program is intended to verify the influence of using distributed external U-wrap CFRP anchorage to shift the failure mode from overall debonding to sectional flexural failure for concrete beams externally bonded with CFRP sheets. Premature cover delamination and FRP debonding are predominant failure modes in FRP flexural strengthening that may be delayed or prevented by using FRP ...

متن کامل

Pre-Cracked Concrete Shear Strengthened with External CFRP Strips

In reinforced concrete design, there are situations where transfer of shear across a specific plane needs to be considered. Examples of such situation include corbels, bearing shoes, ledger beam bearing, and a host of connection between precast concrete elements. In this study, the shear transfer behavior of reinforced concrete is investigated experimentally by conducting test on 6 precracked p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Integrated Engineering

سال: 2022

ISSN: ['2229-838X', '2600-7916']

DOI: https://doi.org/10.30880/ijie.2022.14.05.029